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Abstract
Using internal negations acting on Boolean functions, the notion of Boolean–
Lie algebra is introduced. The underlying Lie product is the Boolean analogue
of the Poisson bracket. The structure of a Boolean–Lie algebra is determined;
it turns out to be solvable, but not nilpotent. We prove that the adjoint
representation of an element of the Boolean–Lie algebra acts as a derivative
operator on the space of Boolean functions. The adjoint representation is
related to the previously known concept of the sensitivity function. Using the
notion of adjoint representation we give the definition of a temporal derivative
applicable to iterative dynamics of Boolean mappings.

PACS numbers: 02.10.−v, 02.10.Hh, 45.05.+x

1. Introduction

The success in understanding the behaviour of continuous dynamical systems originates, to
a great extent, from the power of infinitesimal calculus. Therefore, it seems reasonable to
expect that properly developed calculus can deepen our understanding of iterative dynamics of
Boolean functions, discrete dynamical systems and dynamics of computation. There has been
a significant advance in geometrization of discrete systems ([7] and references therein) and
application of symmetry to special classes of switching gates [4], but no geometric formalism
exists for dynamics in the Boolean context, where one operates with truth values and truth
functions. To achieve this goal, we clarify the proper mathematical formalism to introduce the
basic notions of dynamics and give a correct definition of the derivation in the case of Boolean
functions.

The operators used in switching theory, coding and error detection having properties
similar to the derivative operators already exist: Boolean derivative [1], sensitivity function
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[6] and the total differential [8]. All these operators are linear with respect to the exclusive
or, and have desirable properties. Unfortunately, none of these operators obeys the Leibniz
rule. The Lie algebras formed of Boolean functions give the appropriate framework in which
derivatives emerge in a natural way.

1.1. Notation and basic notions

The following notation is used: Boolean algebra with n atoms is denoted as Bn. Bm,n denotes
the Boolean algebra of Bm → Bn functions, which is isomorphic to Bn2m

. Negation of x is
denoted as x, xy is the shorthand notation for the conjunction of x with y, and ⊕ denotes
the exclusive or. For x, y ∈ Bm conjunction and exclusive or are defined componentwise,
e.g. (x1, . . . , xm) ⊕ (y1, . . . , ym) = (x1 ⊕ y1, . . . , xm ⊕ ym). For an explicit denotation
of conjunction, the symbol ‘·’ is used. Composition of Bm,m functions is denoted as ◦,

i.e. (F ◦ G)(X)
def= F(G(X)).

The internal negation of a Bm,1 function induced by the index subset I = {i1, . . . , ik}, k �
m, is defined as f ′

I(x1, . . . , xm) = f (x1, . . . , xi1 , . . . , xik , . . . , xm), i.e. the variables with the
appropriate indices are negated. Let 〈I〉 = (I1, . . . , In) denote an n-tuple of index subsets,

F ∈ Bm,n, F = (f1, . . . , fn) and let F ′
〈I〉

def= (f ′
1I1

, . . . , f ′
nIn

). For any F ∈ Bm,n, its dual

with respect to the internal negation 〈I〉 is defined as F
′
〈I〉. The symbols 1m,n, 0m,n ∈ Bm,n

denote the constant mappings identically true and identically false.

The partially self-dual (antidual) functions are defined as Sm,n
〈I〉

def= {F ∈ Bm,n | F ′
〈I〉 = F }

(
Am,n

〈I〉
def= {F ∈ Bm,n | F ′

〈I〉 = F }). Antidual functions are invariant under the internal
negation. Here, we generalized the notion of an antidual function introduced in [3]. One may
easily verify that antidual Am,1

〈I〉 functions form a Boolean algebra with 2m−1 atoms. More
generally, for any internal negation generated by the index subsets 〈I〉,Am,n

〈I〉 is isomorphic to

Bm−1,n. On the other hand, the set Sm,1
〈I〉 forms an antichain of length 2(2m−1).

The Boolean derivative of f ∈ Bm,1 is defined as
∂f (x1, . . . , xm)

∂xi

= f (x1, . . . , xi, . . . , xm) ⊕ f (x1, . . . , xi, . . . , xm). (1)

Recalling that x ⇔ x ⊕ 1, the definition of the Boolean derivative resembles the ‘finite
difference’ of f . If the function f does not depend essentially on xi , then ∂f/∂xi ≡ 0m,1 [2].
Higher order partial derivatives are defined as ∂kf/∂xi1 . . . ∂xik = ∂/∂xi1(∂

k−1f/∂xi2 . . . ∂xik ),
etc. The following identity is true:

∂2f

∂xi∂xj

= ∂2f

∂xj∂xi

. (2)

Applying definition (1) and using the properties of exclusive or, one finds that the Boolean
derivative is a nilpotent operator:

∂2f

∂x2
i

≡ 0m,1. (3)

Let I = {i1, . . . , ik}; then the sensitivity function of f ∈ Bm,1 is defined as

σIf ≡ σ kf

σxi1xi2 . . . xik

def= f ′
I(x1, . . . , xm) ⊕ f (x1, . . . , xm). (4)

As for Boolean derivative operators, the following identities hold for sensitivity functions:
σI1(σI2f ) = σI2(σI1f ), σ 2

I f = σI(σIf ) ≡ 0m,1. For F = (f1, . . . , fn) ∈ Bm,n and
〈I〉 = (I1, . . . , In), the sensitivity function of F is defined as σ〈I〉F = (σI1f1, . . . , σIn

fn).
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Boolean derivatives and sensitivity functions are not independent notions, but are
expressible through each other [5]. For example, for any f ∈ Bm,1 in the case I = {i},
we have ∂f/∂xi ≡ σIf .

Let D denote the Boolean derivative or the sensitivity function. For arbitrary f, g ∈ Bm,1

let u and v denote the derivatives of f and g, respectively: Df = u,Dg = v. Then, the
following identities hold:

D(f ⊕ g) = u ⊕ v (5)

D(fg) = ug ⊕ f v ⊕ uv. (6)

1.2. Basic properties of the sensitivity function

Let F ∈ Sm,n
〈I〉 and G ∈ Am,n

〈I〉 . It is simple to check that FG is neither self-dual nor
antidual. Based on (6) one has σ〈I〉(FG) = G; thus, the operator σ〈I〉 performs a surjective
Bm,n → Am,n

〈I〉 mapping. If σ〈I〉F = F ⊕ F ′
〈I〉 = 0m,n, adding F to both sides of the last

equality one concludes ker(σ〈I〉) ⊆ Am,n
〈I〉 . Having 0m,n = F ⊕ F and knowing that F ∈ Am,n

〈I〉
the chain of equalities continues as F ⊕ F ′

〈I〉 = σ〈I〉F , which implies Am,n
〈I〉 ⊆ ker(σ〈I〉), thus

ker(σ〈I〉) = Am,n
〈I〉 .

2. Boolean–Lie algebras

The Lie product [ , ]〈I〉 : Bm,n × Bm,n → Bm,n induced with the index subset system 〈I〉 is
defined as

[F,G]〈I〉
def= F ′〈I〉G ⊕ FG′〈I〉. (7)

One should note the following easily derivable identity:

[F,G]〈I〉 = (σ〈I〉F)G ⊕ F(σ〈I〉G). (8)

For this reason the Lie product can be understood as the Poisson bracket induced by the
sensitivity function σ〈I〉.

The Lie product has the following properties:

[F,F ]〈I〉 = 0m,n (9a)

[F,G]〈I〉 ⊕ [G,F ]〈I〉 = 0m,n (9b)

[F ⊕ G,H ]〈I〉 = [F,H ]〈I〉 ⊕ [G,H ]〈I〉 (9c)

∀F,G ∈ Bm,n, [F,G]〈I〉 ∈ Am,n
〈I〉 (9d)

∀F ∈ Am,n
〈I〉 , [F,G]〈I〉 = F [1m,n,G]〈I〉 = F(G′〈I〉 ⊕ G) = Fσ〈I〉G (9e)

∀F,G ∈ Am,n
〈I〉 , [F,G]〈I〉 = 0m,n (9f )

∀F,G ∈ Sm,n
〈I〉 , [F,G]〈I〉 = F ⊕ G (9g)

∀F ∈ Sm,n
〈I〉 , ∀G ∈ Am,n

〈I〉 , [F,G]〈I〉 = G. (9h)

Using properties of the exclusive or, it is straightforward to show that the [ , ]〈I〉 Lie
product satisfies the Jacobi identity:

[F, [G,H ]〈I〉]〈I〉 ⊕ [G, [H,F ]〈I〉]〈I〉 ⊕ [H, [F,G]〈I〉]〈I〉 = 0m,n. (10)
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For any internal negation 〈I〉 the two constant functions 1m,n and 0m,n are always antidual.
They form a Boolean algebra isomorphic with B1 with respect to componentwise conjunction
and disjunction. On elements of B1, one may define addition as exclusive or and multiplication
as conjunction and find out that with these operations the resulting structure is isomorphic to
the Galois field GF(2). The Galois field with two elements 1m,n and 0m,n is denoted as F2.
The conjunction of F ∈ Bm,n with 1m,n (0m,n) coincides with scalar multiplication of F with
1 ∈ B1(0 ∈ B1), i.e. F · 1m,n = (f1 · 1m,1, . . . , fn · 1m,1) = 1 · (f1, . . . , fn), and similarily
for 0m,n.

The Jacobi identity and the identities (9a), (9b) and (9c) justify calling the algebra
b〈I〉 = (Bm,n,⊕, [ , ]〈I〉, ·, F2) a Lie algebra. a〈I〉 = (

Am,n
〈I〉 ,⊕, [ , ]〈I〉, ·, F2

)
is an Abelian

ideal of b〈I〉. Based on (9d) one has [Bm,n,Bm,n]〈I〉 ⊆ Am,n
〈I〉 . Let F ∈ Sm,n

〈I〉 and
G ∈ Am,n

〈I〉 . Then [1m,n, FG]〈I〉 = G; thus [Bm,n,Bm,n]〈I〉 = Am,n
〈I〉 . From (9f ) it follows that[

Am,n
〈I〉 ,Am,n

〈I〉
]
〈I〉 = {0m,n}. One concludes that b〈I〉 is solvable. From (9f ) and the surjectivity

of σ〈I〉 (section 1.2), one has
[
Bm,n,Am,n

〈I〉
]
〈I〉 = Am,n

〈I〉 ; thus b〈I〉 is not nilpotent. The centre of
the algebra is {0m,n}. For these reasons the algebra b〈I〉 is not semisimple.

Because Am,n
〈I〉 is an ideal, one can determine the equivalence classes of F under the

equivalence relation ∼〈I〉 as F ∼〈I〉 G|mod Am,n
〈I〉 . The definition of the equivalence class is

F ∼〈I〉 G ⇔ F ⊕ G = H ∈ Am,n
〈I〉 , and for H one has H = H ′

〈I〉 = (F ⊕ G)′〈I〉 = F ⊕ G,
which, using the properties of exclusive or, can be rewritten as F ∼〈I〉 G ⇔ σ〈I〉F =
σ〈I〉G, i.e. [F ]〈I〉 def= {G|σ〈I〉F = σ〈I〉G}. Proving the fact that ∼〈I〉 is an equivalence
relation is straightforward, once one recalls that σ〈I〉 vanishes on Am,n

〈I〉 . Addition and

the Lie product on equivalence classes are defined as [F ]〈I〉 ⊕ [G]〈I〉 def= [F ⊕ G]〈I〉 and

[[F ]〈I〉, [G]〈I〉] def= [[F,G]〈I〉]〈I〉. From the definition of the Lie product on equivalence
classes, it immediately follows that the factor algebra b〈I〉/a〈I〉 is isomorphic to a〈I〉. From
σ〈I〉([F,G]〈I〉) = 0m,n = [σ〈I〉F, σ〈I〉G]〈I〉, it follows that σ〈I〉 is a Lie homomorphism.

The adjoint representation of F ∈ Bm,n is defined as usual: Ad
〈I〉
F

def= [F, ]〈I〉.
From the validity of the Jacobi identity, it follows that the adjoint representation acts as
a derivative operator on Bm,n functions. Based on (9e) the sensitivity function can be
expressed as σ〈I〉 = Ad

〈I〉
1m,n

. Finally, one may note that for any G ∈ Bm,n one has

Ad
〈I〉
F

(
Ad

〈I〉
F (G)

) = Ad
〈I〉
F (G) if and only if F ∈ Sm,n

〈I〉 , i.e. the adjoint operator is idempotent in

this case, while for F ∈ Am,n
〈I〉 the following holds: Ad

〈I〉
F

(
Ad

〈I〉
F (G)

) = 0m,n. The nilpotency

of Ad
〈I〉
F for F ∈ Am,n

〈I〉 points to a〈I〉 as a nil ideal of b〈I〉 ([9], p 206). In fact, a〈I〉 is the nil
radical of b〈I〉.

3. Temporal derivative

Finally, we give the proper definition of the temporal derivative. For F ∈ Bn,n the iterative
dynamics is defined as Xt+1 = F(Xt). Based on the definition of the Boolean derivative (1),
the naı̈ve definition of the temporal derivative would be dtF (X) = F(X) ⊕ X, because it
compares two consecutive states of the system. This attempt results in a ‘derivative’ operator
which is neither linear with respect to exclusive or, nor obeys the Leibniz rule. One may
rewrite the naı̈ve derivative as (Id ⊕F)(X), i.e. an exclusive or of F with the identity function,
acting on X. Because Id is a self-dual function, and based on the validity of (9g), one would
like to ‘make’ F self-dual. It is possible to construct a self-dual function F : Bn+1 → Bn+1

which coincides with F, when its domain is restricted to Bn. For this purpose, we note that
Boolean functions can be expanded into disjunctive normal forms. For simplicity we choose to
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Table 1. The truth table of the temporal derivative for a B2 to B2 iteration defined by
F(x, y) = (x ∪ y, x y).

x y z f1 f2 f1 ⊕ x f2 ⊕ y

0 0 0 0 1 0 1
0 0 1 0 1 0 1
0 1 0 0 1 0 0
0 1 1 1 0 1 1
1 0 0 0 1 1 1
1 0 1 1 0 0 0
1 1 0 1 0 0 1
1 1 1 1 0 0 1

expand the Boolean function f : Bn+1 → B1 with respect to some subset of its variables coded
with the index subset I = {i1, . . . , ik} where k � n+ 1. The partial disjunctive normal form of
a function is f (x1, . . . , xk, xk+1, . . . , xn+1) = ∪λ1∈{0,1},...,λk∈{0,1}f (λ1, . . . , λk, xk+1, . . . , xn+1),
following [10]. Similar expansion holds when we do not expand with respect to the consecutive
variables. If d(λ1 . . . λk) denotes the decimal value of the binary number λ1, . . . , λk ,
we have Ad(λ1,...,λk)(xk+1, . . . , xn+1) = f (λ1, . . . , λk, xk+1, . . . , xn+1), where d(λ1, . . . , λk)

is an integer ranging from 0 to 2k − 1. Thus, the partial disjunctive normal form can
be represented as an ordered 2k-tuple 〈A0, . . . , A2k−1〉, where all the A’s are functions
of the remaining, unexpanded variables. The partial disjunctive normal form of σIf is
〈(A0 ⊕ A2k−1), (A1 ⊕ A2k−2), . . . , (A2k−1−1 ⊕ A2k−1), (A2k−1 ⊕ A2k−1−1), . . . , (A0 ⊕ A2k−1)〉.
For f ∈ Sn+1,1

I , from the definition of self-duality, it follows that σIf = 1n+1,1. Thus, for the
partial disjunctive normal form of a self-dual function, we obtain A0 = A2k−1, A1 = A2k−2

and so on. Let F (x1, . . . , xn, z)
def= (F (x1, . . . , xn)z ⊕ F

′
〈I〉(x1, . . . , xn)z, z). Let X =

(x1, . . . , xn, z) ∈ Bn+1, and πn(X)
def= (x1, . . . , xn). When z = 1, the value of F projected to

Bn coincides with the value of F, i.e. πn(F (x1, . . . , xn, 1)) = F(x1, . . . , xn), whilst for z = 0
the value of F projected to Bn coincides with the value of F

′
〈I〉, the dual function of F. Thus,

F (x1, . . . , xn, 1) corresponds to the original iterative dynamics on Bn, and F (x1, . . . , xn, 0)

corresponds to the naturally adjoined dual dynamics. Based on the F ’s partial disjunctive
normal form, it is simple to show that F is self-dual with respect to internal negation over all
of its variables. Let now 〈I〉 denote internal negation over all the n + 1 variables of F , and for
X ∈ Bn+1 let Id (X) = X. Using the previous notation, the correct definition of the temporal
derivative is

dt F = [Id , F ]〈I 〉 = Ad
〈I 〉
Id (F ). (11)

Defined in this way, the temporal derivative becomes linear with respect to the exclusive
or and it obeys the Leibniz rule, because the adjoint representation does.

3.1. Example

We illustrate the notions related to the temporal derivative with the following example. Let
F = (x ∪ y, x y) ∈ B2,2. For the dual function of F, we have (xy, x ∪ y). The function
F = (f1, f2, f3) ∈ B3,3 is thus ((x ∪ y)z ⊕ xyz, x yz ⊕ (x ∪ y)z, z). The truth tables of f1, f2

and the temporal derivatives are summarized in table 1.
The disjunctive normal form of Ad

〈I 〉
Id (F ) can be written as (xy z ∪ xyz, xyz ∪ xyz ∪

xy z ∪ x yz ∪ xyz ∪ x y z, zxy ∪ zxy ∪ zxy ∪ zx y). From the truth table, one may read the
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A functions; for instance, in the first component the two nonzero ones are Ad(011) = A3 and
Ad(100) = A4. Inspection of the truth table immediately reveals the fixed point of iteration:
(x, y) = (0, 1), the point where Ad

〈I 〉
Id (F ) vanishes irrespective of z.

4. Conclusion

Having introduced the proper framework and precise notions characterizing the evolution,
one may create the differential-geometric calculus. By looking for further parallels with
classical mechanics and continuous dynamical systems, one hopes to gain insight into Boolean
dynamics.
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